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DeepBionicSyn: Creative 3D Shape Synthesis via Implicit
Representation for Organic Biologically Inspired Design

ANONYMOUS AUTHOR(S)
SUBMISSION ID: 671

(b) Synthetic candidates (c) Inspired designs(a) Input model

Fig. 1. DeepBionicSyn takes a collection of natural creations and man-made artifacts as input(a) and synthesizes novel 3D biologically inspired designs(b).
Synthetics designs using DeepBionicSyn yield potentially functional and inspiring variations(c).

Biologically inspired design holds great value for product design. Inspired
by geometric features from natural creations, designers can create organic
nature-inspired shapes. Traditionally, even for experienced designers, bio-
logically inspired design is related with time-consuming or trial-and-error
effort. We propose DeepBionicSyn, an approach for automatic creative 3D
biologically inspired design. We view the biologically inspired design prob-
lem as an out-of-distribution synthesis problem based on a dataset of natural
creations and man-made artifacts. DeepBionicSyn is trained on AC-BIONIC,
a large-scale dataset containing 28k reference shapes. We mine the required
design candidates in a shared neural parametric representation space of the
input dataset using a creativity synthetic solver. Finally, a human-in-the-loop
local manifold subspace exploration technique allows designers to explore
design variants effectively. Compared with previous three-dimensional gen-
erative methods for creativity, our framework can meet organic biologically
inspired design requirements and does not require pre-analysis for shape
collections. We evaluate the effectiveness of our method on a chair product
biologically inspired design task based on the chair-animal hybrid dataset.
We introduce a metric for evaluating creative biologically inspired design
tasks to quantitatively assess our approach and other potential alternatives.

CCS Concepts: • Computing methodologies → Computer graphics; •
Applied computing→Arts and humanities; •Human-centered com-
puting → Systems and tools for interaction design.
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1 INTRODUCTION
Biologically inspired design (also called bionic design) is one of
the key trends in product design. In this paper, we limit the topic
to form-wise biologically inspired design, which has received in-
creasing attention from the product design community. Typically, in
biologically inspired design, product functions and nature-inspired
forms are blended into mechanical structures, microscopic materials,
or forms to optimize the outcome of the product. Unlike bio-inspired
design based on mechanical structures and microscopic materials,
form-wise biologically inspired design can be used to create amaz-
ing artistic effects in an abstract and organic form by combining
abstract features of natural creations with man-made artifacts [Holt
et al. 2005]. For example, animal chairs (see Figure 2) serve as an
enjoyable and sustainable product that can be used in children’s
education and as public sculptures.
However, organic biologically inspired design breakthrough is

costly. Off-the-shelf nature-inspired 3D models of man-made arti-
facts are rare due to the synthetic challenge and the modeling chal-
lenge. The synthetic challenge: Initial inspiration is usually found
through trial and error by repeatedly extracting, analyzing, and
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Fig. 2. Examples of biologically inspired product designs. (a) A children
elephant chair from Charles Eames 2017. (b) An animal chair in organic
form from Eero Arinio 2003. (c) An armchair in the shape of pig generated
from text-prompt generator [Ramesh et al. 2021]. (d) A concrete rhinoceros
biologically inspired chair from Maximo Riera 2020.

(b) Biological

Inspiration
(e) Sketch (f) Modeling

(d) Functionality

Analysis

(g) Rendering Demo

(c) Product Research

(a) Browse Dataset

(i) Automation

from (b) to (f)

E G

Fig. 3. The traditional process of creative shape biologically inspired design:
Designers browse shape samples of natural creations, man-made artifacts
(a) and similar products (c). Then designers analyze biological features
(b) as inspiration set and functionality of object product as design target
(d). Before creating 3D assert, they developed product plans in the form
of sketches. (e). Finally, models are built in 3D software (f) and rendered
(g). Our approach takes 3D models from (a) as input and automates the
procedure of b-f (I).

blending features of biologically inspired objects (e.g., man-made
artifacts) and the design target (e.g., natural creations). These in-
spirations culminated in a sketch that was used to guide the model
(see Figure 3 b-c). This step relies heavily on a stroke of inspiration
and the prior knowledge of a professional designer. It has a deci-
sive influence on the final product result. The modeling challenge:
Modeling efforts are required for reconstruction from the sketch to
the 3D geometry prototype (see Figure 3 e-g). It is challenging to
ensure that the final biologically inspired shape meets abstract and
organic style requirements. In particular, in Figure 2, Eero Arinio
2003 is more in line with the organic abstraction of the form. Charles
Eames 2017 is focused on the texture of imagery rather than the
geometric shape and Maximo Rlera 2020 is figurative. Our work
focuses on solving the modeling challenge and synthetic challenge in
the biologically inspired shape design process.

There are currently gaps in the literature with respect to address-
ing the two challenges mentioned above. Previous computational

biologically inspired design methods[Yu et al. 2019] have been lim-
ited to graphic contour design. In the graphics community, one of the
mainstream ideas to solve the synthetic challenge is to segment two
types of objects and then assemble the components[Chaudhuri et al.
2013; Chaudhuri and Koltun 2010; Xu et al. 2012]. However, these
methods do not take the abstraction and simplification of shapes
into account, resulting in the inability to form seam-free combina-
tions and organic forms [Holt et al. 2005] for artistic design effects.
Furthermore, task-specific rules, such as presegmentation [Dun-
can et al. 2015; Huang et al. 2017] or shape grammar [Guo et al.
2014] are needed. In contrast, it is possible to obtain organic 3D
synthetics in a task-independent manner through interpolation in
latent space [Chen and Zhang 2019; Wu et al. 2016], especially with
implicit representation [Chen and Zhang 2019; Mescheder et al.
2019; Park et al. 2019]. However, the off-the-shelf generative model
suffers from low-fidelity when fusing cross-category shapes in a
biologically inspired design[Schor et al. 2019].

We analyzed this issue and gained two insights. On the one hand,
employing an off-the-shelf implicit representation model is suffi-
cient to meet the abstract and organic demands for the modeling
challenge. The key is to further mine the generative model knowl-
edge, namely, a subset of latent codes. We consider a multi-category
and creative synthesis problem as a variant of the out-of-distribution
(OOD) generation problem. We hope to obtain a multimodal OOD
distribution (see Figure 8 (d)) given input training dataset distri-
butions. Then, the candidate set is obtained by sampling from the
OOD distribution. On the other hand, synthetics of high fidelity
and biologically inspired value should be controlled by the users
themselves as a human-in-the-loop process, in addition to relying on
rule-based latent space mining. Our approach should help designers
explore candidate shape collections and find the desired variants
on the basis of selected candidates. The OOD generation problem
can also be solved considering the human-in-the-loop approach.
Inspired by interpretable directions [Chiu et al. 2020; Härkönen
et al. 2020; Shen and Zhou 2021], desired variants are obtained by
exploring generator knowledge via local manifold search [Chiu et al.
2020].
Based on this, we introduce implicit autoencoder (IMAE) [Chen

and Zhang 2019] as a parameterization representation and propose
a creativity synthetic solver. The core idea is to constrain the discov-
ery of synthetics with biologically inspired value as an optimization
problem in the OOD area, according to the hybrid score function,
to obtain the top K candidates. Then, we provide an interface to
help the user explore candidate distribution and potential variations
in manifold subspace by changing semantic slides. In the experi-
ments, we use the animal-chair design as an example. Since there
are no research studies that can be directly applied to the task at
hand, we quantitatively provide a method to evaluate the quality of
bioinspired design generators. The baseline includes existing overall
potential alternatives and alternatives to creativity synthetic solver.
In addition, to demonstrate the effectiveness of our system design,
we measure the efficiency of our overall system through several case
studies. The results show that our system can be used to address
the three main needs of designers and outperform the baseline in
terms of quantitative evaluation results and qualitative designer
satisfaction.
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Our work makes the following contributions:
• We propose a novel task for learning-based creative 3D bio-
logically inspired design. The task, from the perspective of a
deep generative model, is different in terms of the final result
and the challenges faced compared to the tasks solved by
previous assembly-based approaches.
• We theoretically and quantitatively demonstrate that cre-
ativity and biologically inspired designs are highly relevant
to out-of-distribution synthesis. We consequently propose a
proper shape synthesis framework as a creativity synthetic
solver.
• We present a bistage hybrid synthetics computational system.
It not only prevents users from getting bored with the infinite
number of candidates generated by the shape generator but
also provides enough freedom to explore the design variants
in a high-level manner.

2 RELATED WORK

Biologically inspired design. Fields of research such as "biological-
inspired design", "bionics”, “robotics”, and "biomimetics" originated
during the mid-twentieth century and are now widely explored
fields. More recent bio-design, mainly developed in Architecture,
has defined as "biophilic design"[Kellert et al. 2011] to describe an
"innovative approach that emphasizes the necessity of maintaining,
enhancing and restoring the beneficial experience of nature in the
built environment." biologically inspired design is classified in terms
of form, function, and system [Bertolini et al. 2006]. In this paper,
creative biologically inspired shape design emphasis on a form-wise
manner, combining abstract features of nature creations with man-
made artifacts [Holt et al. 2005]. Previous computational biologically
inspired design methods [Yu et al. 2019] are limited to 2D form. In
the more general design community, the generative design of both
rule-based approaches [Attar et al. 2010; Matejka et al. 2018] in
3D and deep generative model (GDM)-based approaches [Oh et al.
2019] in 2D was proposed. Rule-based generative design is difficult
to accommodate the diversity required for biologically inspired.
3D generative design [Bidgoli and Veloso 2019; Shu et al. 2020] is
closer to our work but the field mainly focuses on single-category
synthesis. The design community is also considering increasing
the diversity of generative design by changing the loss [Chen and
Ahmed 2020; Elgammal et al. 2017]

Data-driven geometry modeling. In the graphics community, the
evolving field of data-driven geometry modeling provides ideas
for solving biologically inspired design problems. With only a few
data references, a large number of various 3D shapes are synthe-
sized [Kalogerakis et al. 2012]. Then, a human-in-the-loop interac-
tion interface allows users to explore shape collections [Averkiou
et al. 2014; Marks et al. 1997] or to further edit [Chiu et al. 2020; Yang
et al. 2021]. This pipeline partly covers the modeling challenge and
the synthetic challenge.

However, regarding the synthetic challenge, biologically inspired
design shall not simply mimic the training set distribution but rather
a blend of natural creation and man-made artifacts. It remains a
challenging problem to automatically generate biologically inspired
designs bridging the functionality of man-made artifacts and the

biologically inspired morphological values of natural creations. One
of the mainstream ideas to solve the synthetic challenge is to segment
the two types of objects and then assemble the components [Chaud-
huri et al. 2013; Chaudhuri and Koltun 2010; Xu et al. 2012]. Thework
that most closely resembles our goal is zoomorphic design [Duncan
et al. 2015], which uses a rule-based approach to assemble man-made
artifacts and animals in an energy minimizing manner. However,
assembly-based methods ignore abstraction and simplification of
shapes, resulting in the inability to form seam-free combinations
and organic forms [Holt et al. 2005] for artistic design effects. In ad-
dition, some prior expert knowledge is required, such as presegmen-
tation [Chaudhuri et al. 2013; Xu et al. 2012] or shape grammar [Guo
et al. 2014]. To date, some studies have found it possible to obtain
smooth 3D synthetics through interpolation in latent space [Chen
and Zhang 2019; Wu et al. 2016], especially with a fine parametric
representation such as a deep implicit representation [Chen and
Zhang 2019; Mescheder et al. 2019; Park et al. 2019]. They still mimic
the training set distribution. Therefore, an off-the-shelf implicit gen-
erative model is more suitable for the modeling challenge, leaving
the synthetic challenge to be solved. A straightforward idea for out
of distribution synthesis (OODS) problem is to add loss to encourage
diversity and different synthetics from training dataset[Elhoseiny
and Elfeki 2019; Sbai et al. 2018]. An interesting finding is that
the quality of samples obtained at the edge of the training data
distribution is higher than those very far from the training data
distribution[Elhoseiny and Elfeki 2019]. This means that we need
to further explore the latent space of the generative model to target
valuable OOD regions.

3D shape style transfer [Chen et al. 2021; Yifan et al. 2020] seems
to be a feasible alternative. However, we found that biologically
inspired design is not a global and local synthesis problem. We
confirm this suspicion by a set of baseline comparison experiments.

Latent space exploration. Discovering synthetics to meet demand
from pre-trained latent variable generative models is an important
part of Artificial Intelligence Generated Content(AIGC). Although
AIGC offers an unlimited number of synthetics, AIGC easily trans-
forms a trail-and-error manual content creation process into a te-
dious selection from a large number of candidates. As a result, there
is a growing interest in providing an appropriate set of interac-
tions for generative models[Yue et al. 2021]. A pioneering work
from a user interface point of view is the Design Galleries[Marks
et al. 1997]. They provide a projector for browsing a set of sam-
ples based on their embedding in parametric representation space.
Averkiou extend the projector to 3D shape gallery[Averkiou et al.
2014]. In addition, a 3D interactive fine-tuning tool such as the one
designed by umetani[Umetani 2017] is also necessary. Umetani’s
tool is based on latent space of generative model but the control is
too low-level and lack of diversity. Recent research in the field of
image synthesis aims at shifting synthetics distribution from the
original dataset distribution, such as truncation trick [Karras et al.
2019], and interpolation in latent space for pretrained model. Fur-
thermore, exploring interpretable direction (EID) [Shen et al. 2020b;
Xia et al. 2021] for transforming synthetics along a high fidelity trace
but actually towards out-of-training-dataset distribution. From this
perspective, interpolation or morphing method [Dosovitskiy et al.
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2015] is taken as a special case of data-specific EID. EIDs can be
found by a supervised approach [Shen et al. 2020b]. There are also
a number of unsupervised approaches that use pre-trained genera-
tor weights [Chiu et al. 2020; Shen and Zhou 2021] or the feature
space distribution [Wang et al. 2021] of the training set to obtain the
corresponding interpretable directions. We find the local manifold
subspace search approach [Shen and Zhou 2021] suitable to explore
the design variants with high-level semantic change.

3 OVERVIEW
The 3D shape biologically inspired design task is inspired by the
3D shape synthesis problem, and mathematics modeling will be
introduced first. Then, an overview of the biologically inspired
design synthesis framework is presented in Figure 4.

Problem formulation. In three dimensional data space X, given
man-made artifacts samples Dd = {xk }

M
k=1 and natural creations

samples Db = {xk }
N
k=1 following probability distribution of p(d)

and p(b) respectively, our goal is to search for 3D shapes of high
fidelity and high biologically inspired value that incorporate seman-
tic features from the input shape collections. From the represen-
tation learning perspective, we should project high-dimensional
3D data into a learned joint compressed parametric representation
space Z with encoder E : X 7→ Z, a low-dimensional Euclidean
space. We suppose embedding of distribution as p(zd ) and p(zb ).
Then, we choose a specific sampling strategy to find a latent code
sequence {zk }

γ
k=1 ⊂ Z of ideal biologically inspired design distri-

bution p(zk ). Finally, a generator G : Z 7→ X maps latent code
sequence{zk }

γ
k=1 ⊂ ZI to 3D data as a creative biologically inspired

design shape.

Challenges. According to the traditional process of creative shape
biologically inspired 3, the challenges can be categorized as the
modeling challenge and synthetic challenge. The modeling challenge
means that finial synthetics should be sufficiently functional, organic
and abstract. Compared to the assembly-based 3D shape represen-
tation from fit-and-diverse [Xu et al. 2012], implicit deep generative
models provide a smooth representation space, allowing for certain
abstractions and organic forms. However, even for off-the-shelf gen-
erative models, this problem is still nontrivial, as sampling from
the low probability density area of the dataset (OOD area) required
for biologically inspired design suffers from low fidelity problems.
The problem is related to the synthetic challenge. The synthetic chal-
lenge is a core problem for creative biologically inspired design.
Synthetics should refer to the features of different categories of
input shapes and maintain a large diversity to meet the needs of
designers. To make matters worse, for generative models, if a data-
driven approach requires sufficiently similar data for training, the
biologically inspired design requires a zero-sample approach, that is,
forcing the generative model to generate samples that do not match
the original input data distribution. We refer to this challenge as the
out-of-distribution synthesis (OODS) problem. In OODS, there is an
extreme scarcity of datasets and synthetics have low fidelity. Finally,
this study, as a general computational biologically inspired design
framework, should be category-independent and task-agnostic.

Methodology. To maintain the fidelity and diversity of synthetics,
an AC-BIONIC dataset with design-oriented (D-O) and performance-
oriented (P-O) data enhancements (see 4 a) was created, containing
over 20k weak-shot labeled 3D geometry data with natural creations
and man-made artifacts for input, as well as manual biologically
inspired designs for the out-of-distribution validation test. Inspired
by the traditional process of creative shape biologically inspired
design in Figure 3, we propose a bistage approach. First, we use an
implicit generative model to learn a parametric representation of the
dataset. We limit potential biologically inspired design exploration
space to the OOD area of this representation space, which will theo-
retically and experimentally tested. Second, a high lack of diversity
and low fidelity synthetics would lead to selection difficulties due to
an improper sampling strategy. Infinite candidates convert the orig-
inal time-consuming trial-and-error modeling effort into another
tedious selection effort. To avoid this situation, we use a creativity
synthetic solverto determine out a batch of candidates {G(xi )}Mi=1
and enable users to explore and further fine-tune candidates. The
cold start module begins with a sampling strategy from latent space
Z with a heuristic hybrid objective functionf : X 7→ R to find
latent code sets(see Figure 4 c), where filtered out synthetics have
high fidelity and high biologically inspired value (equivalence to
high OOD score). Then, we design an interface, where the user can
interact with the system, select ideal synthetics and fine-tune results
with several semantic directions. Finally, postprocess is performed
to ensure low-poly and minimalist meshes as the final organic bio-
logically inspired design (see Figure 4 d).

4 DATASET OF DEEPBIONICSYN
We created the AC-BIONIC dataset, which combines an animal-
chair dataset, as the input natural creations and man-made artifacts,
and a set of creative synthetics with semantic annotations or the
designer’s manual biologically inspired design independent of our
model. It is hoped that the dataset will be used to accelerate relevant
research on automated creative biologically inspired design and the
recognition of creative assets from outside-of-distribution synthesis.

Data collection. We collected over 20k training data points for
unsupervised generation tasks. There are 6778 chairs from the
ShapeNet dataset [Chang et al. 2015] and 132 various animals col-
lected from the online 3D model store at our own expense. The
design faculty and students used a self-developed web application
to screen potential products that met the demand of biologically
inspired design and were considered of value for creative inspira-
tion. Potential copyright issues in animal datasets were avoided by
eliminating privacy. 100 augmented designer’s manual biologically
inspired design is provided for bothmodeling challenge and synthetic
challenge. In modeling challenge, designers modeled based on exist-
ing biologically inspired design images collected from well-known
works. In synthetic challenge, designers was advised to browse the
shape collection of training dataset and try to create the coarse
geometry models.

Data augmentations. To address the lack of ground truth for 3D
bio-inspired design and the unbalanced distribution of the two kinds
of 3D models, a widely used strategy is data augmentations. In
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Fig. 4. Overview of our framework for 3D biologically inspired design, which combines deep implicit generative modeling and user-in-the-loop interactive. (a)
Dataset consist of natural creations as inspiration and man-made artifacts as product target. (b) After training an IMAE, there exist some biologically inspired
synthetics in the shape perception boundary in latent space. The trained encoder and decoder form a parametric representation of 3D shape. In latent
space, a problem is how to find out creative biologically inspired design. Creativity Synthetic Solver obtains final results via two steps. (c) A hybrid function
containing weak-shot classifiers(W-Cls) and quality term is deployed to get high score candidates. Through multimodal optimization sampling, candidates
filtered out are recommended to users as if cold start in recommendation. (d) Candidates with high scores are then inputted into a human-in-loop system. The
Projector view of the web interface allows the user to explore the entire design space. After selecting the desired synthetic, a local manifold subspace search
algorithm is employed to explore potential design variants in a slide-bar manner.

the biologically inspired design synthesis task, data augmentation
methods are divided into design-oriented (D-O) and performance-
oriented (P-O) methods. The use of them both expanded the size of
the training animal dataset from 132 to 13,804.

D-O data augmentation focuses on the transfer of design knowl-
edge to the preparation of data sets for design requirements. For
example, the combination of shapes in different orientations counts
as a factor in a designer’s design process. After evaluating exist-
ing biologically inspired products and brainstorming, generative
designs that considered multiple directions allowed us to explore
additional possibilities. Considering the symmetry of the target
product and the trade-off between diversity and efficiency, we chose
to apply a rotational transformation of the natural creation dataset
in seven directions to achieve a diverse blend of syntheses.

P-O data enhancement aims to improve the performance of deep
generative models. Generators suffer from unbalanced training data,
especially with only hundreds of animal datasets. Nonrigid defor-
mation, such as affine transformation, is an effective approach to
alleviate this problem. We warp the training dataset on three or-
thogonal axes with various degrees.
In addition to the two data augmentation techniques already

mentioned, animal motion augmentation [Zuffi et al. 2017] and

assembly [Guo et al. 2014] augmentation seem to also be avail-
able. However, we do not take them into account since we hope
that our approach is not limited to specific tasks as mentioned in
the category-independent hypothesis. Both methods require corre-
sponding domain knowledge. For example, SMAL [Zuffi et al. 2017]
cannot be directly applied to birds or more strange monsters. In
contrast, P-O and D-O augmentation are task-agnostic.

Representation. Following IMAE [Chen and Zhang 2019], we rep-
resent the 3Dmodel as mesh, voxel, point-value pair, and embedding
vectors. A set of toolkits enable users to input a mesh file and obtain
other data formats used in the whole pipeline. More details on the
data transformation are shown in Figure 5.

5 OUT-OF-DISTRIBUTION SYNTHESIS PROBLEM
The synthetic challenge poses a challenge for deep generative models,
which tend to produce designs that are similar to those in the train-
ing data, rather than novel or creative designs [Chen and Ahmed
2020; Schor et al. 2019]. This limitation makes it difficult to use
these models for creative biologically inspired shape design in the
synthetic challenge. To address this challenge, we propose to treat
it as an Out-of-Distribution Synthesis (OODS) problem, where the
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Fig. 5. Data representation and transform methods: The mesh shapes were
converted to 643 voxel via binvox toolkit[Nooruddin and Turk 2003]. Point-
value point is similar to point cloud, serving as the middle process of training.
The sampling method[Chen and Zhang 2019] is surfaces-near and for pro-
gressive training. Latent vector is our desired parametric representation.

goal is to generate novel biologically inspired synthetics. This is dis-
tinct from the general generative task, which focuses on fitting the
prior distribution to the training data distribution, whereas OODS
emphasizes fitting the prior distribution to different distributions
and meeting the requirements of the application domain. The target
distribution depends on the objective function that is designed for
the task.

5.1 Creativity existence hypothesis
We propose to construct an axiomatic system for creative biologi-
cally inspired design, which will provide a mathematical framework
for defining and evaluating designs in this domain.

Definition. To give further insight into biologically inspired de-
sign, some basic conceptions will be presented.
• Natural creations and man-made artifacts. The creative bio-
logically inspired design task involves two main categories:
natural creations and man-made artifacts. This does not mean
that our framework is limited to only these two categories of
data. For example, in the case of the animal chair, the natural
creations category may include a wide range of animal shapes
and species, including mythical creatures such as Pegasus.
• High fidelity. We will evaluate the fidelity of synthetics using
metrics such as smoothness and connected component counts,
to ensure that they are visually coherent and well-formed.
This definition ensures that the synthetics are both abstract
and functional, and meet the desired criteria for creativity
and realism.
• Out-of-distribution area. The out-of-distribution area is de-
fined as a set of points in the probability space that have a
probability lower than a given threshold. In mathematical
terms, this means that given a probability space (Ω, F , P) and

a threshold 0 < M < 1, the sufficient and necessary condition
for an open setA ⊂ Ω to be an out-of-distribution area is that
for any z ∈ A, we have p(z) < M ..

Hypothesis. Our computational framework for biologically in-
spired design is based on three hypotheses. The first two hypotheses
are inspired by the designer’s design process, as shown in Figure 3.
The third hypothesis is empirical, and is derived from observations
of existing generative models and tasks.
• Category-independent hypothesis. Because the categories of
natural creations and man-made artifacts are coarse-grained,
our framework for biologically inspired design will not con-
sider category-specific methods. For example, there are su-
pervised semantic segmentation and functional detection
methods that are useful for improving the quality of gener-
ated objects in the categories of chairs or animals, but they
may not work in a brand-new category such as aliens [Xu
et al. 2012]. The training dataset will be labeled only with
the general categories of natural creations and man-made
artifacts, and will be processed using methods that are useful
for these two coarse-grained categories.
• Fusion hypothesis. Synthetics with high biologically inspired
value are a balance between Natural creations and man-made
artifacts distributions, rather than being based solely on the
in-distribution of reference objects. Our framework attempts
to combine biological properties with product semantics, to
create designs that are both functional and creative. This
combination of features results in synthetics that fall into the
out-of-distribution area in the shape semantic space, and can
be learned by deep generative models as a latent representa-
tion.
• Existence of the high-fidelity hypothesis. A sample of high fi-
delity is a subset of the training dataset that falls into the
region of low probability. This hypothesis is based on empiri-
cal observations and has been demonstrated in experiments
(see Figure 16). In other words, we expect that high-fidelity
samples will be rare or unusual within the training dataset,
and will require the generative model to explore and generate
novel or creative designs.

Finally, we propose a theorem that demonstrates that our goal
of creating creative biologically inspired designs is possible. This
theorem shows that the desired synthetics can be found in the out-
of-distribution area, by searching for high-fidelity samples. The
proof of the theorem is provided in the appendix.

Heterogeneous distribution lemma: In creative bionic design tasks,
natural creations have a different distribution from man-made arti-
facts in latent spaceZ.
Existence of the out-of-distribution area lemma: In a latent space
Z, there is at least one out-of-distribution area.
Creativity existence theorem. In the low probability of training

dataset distribution for creative biologically inspired design, there
exist high fidelity objects, and they follow fusion hypothesis. We
define them as creative synthetic.
And then, we can infer that general generation tasks cannot

solve creative biologically inspired design tasks because the general
generation task violates the heterogeneous distribution lemma, the
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Fig. 6. Distribution of one-by-one chamfer distances between manual bio-
inspired shapes and reference datasets.

prerequisites of the creativity existence theorem. To achieve creative
biologically inspired design, we should introduce a new generative
framework to generate creative synthetics. 3D shape generative
model can be used to learn a proper parametric representation
spaceZ. Then, a sampling algorithm is required to filter out creative
synthetics. The scoring function aims to identify synthetics of high-
fidelity and high biologically inspired value. The former can refer to
the high-fidelity definition and fusion hypothesis, while the latter
has to take into account the human goodness function. The user
interface will be an option to recommend creative synthetics and
allow users to explore the design space freely.

5.2 Out-of-distribution test
The out-of-distribution test is used to demonstrate that for a pre-
trained parametric representation network, the majority of biologi-
cally inspired designs designed by human designers fall in the OOD
area. We prepared 50 manual modelling from existing reconstruc-
tions of well-known bio-inspired designs, as well as manual design
independently created by designers browsing our dataset. And then,
we computed chamfer distance (CD) between them and training
data in our AC-BIONIC dataset. The results (see Figure 6) illustrate
that the distributions of the bio-inspired designs are far from their
reference data. Manual modelling and manual design distributions
are close and both fall into the OOD area.
The engineered implementation of OOD Area is to introduce

an auxiliary weak-shot classifier (W-Cls) into the latent space. An
intuitive way to understand this is that when the network has diffi-
culty determining which class of the input data set the generator
corresponds to, then the generator is naturally far away from the
high density area of the training set data distribution. More details
of this indicator are given in Equation 7.

6 BI-STAGE CREATIVE BIOLOGICALLY INSPIRED
DESIGN SYNTHESIS

To solve the Out-of-distribution synthesis (OODS) problem, we dis-
entangle the solution into a parametric representation and the cre-
ativity synthetic solver. We consider a bio-inspired-specific method
that trades off the shifting distribution and fidelity to natural cre-
ations and artifacts inspired by interpolation blending. And then we
introduce an unsupervised EID method for further human-in-loop
editing.

6.1 Implicit deep generative model
modeling challenge is to obtain a smooth and semantically mean-
ingful parametric representation of the 3D data owing to biologi-
cally inspired design demands for abstract and organic forms. IM-
GAN [Chen and Zhang 2019], composed of a 3D CNN encoder, an
implicit decoder and a vanilla latent-GAN [Achlioptas et al. 2018],
successfully produces smooth shape morphing effects. We adopt it
in our work to achieve smooth parametric representation.

Implicit representation is actually is the signed distance field F ().
For every input point p, F (p) = χ (P,occupation). χ is the charac-
teristic function mapping X to {0, 1}, and occupation indicates the
states in which the point P is inside the 3D shape model. If P meets
occupation then F (p) = 1. The implicit decoder utilizes the fact that
the MLP neural network fθ () is good at fitting isosurface [Chen and
Zhang 2019], a continuous boundary of query points P . The loss
function is as follows:

L(S ;θ ) =
∑
p∈S | fθ (p) − F (p)|

2 ·wp∑
p∈S wp

, (1)

wherewp is the sampling weight and the inverse of the sampling
density points near the point p. fθ is an implicit-decoder. After
unsupervised training, we achieve a parametric representation Z ⊂
Rn , the whole point set of F (p),∀p ∈ X.

6.2 Failure modes for in-distribution generative models
We can apply following usual method to explore the latent space and
attempt to mine creative samples(Figure 8). However, if we directly
apply off-the-shelf 3D shape generative models [Chen and Zhang
2019] to creative biologically inspired design synthesis task, or explore
the potential space with mainstream methods[Achlioptas et al. 2018;
Wu et al. 2016], we will realize two failure modes. These challenges
are the out of distribution synthesis and feature degradation.
Before introducing the two problems, let us introduce the com-

monly used methods for exploring the latent space(see Figure 7 b
and c). They can be divided into three categories: random sampling,
linear combinations based on selection vectors, and direction ma-
nipulation. Detailed descriptions are included in the appendix. In
practice, they are difficult to accomplish our tasks directly due to
following challenge:

Out of distribution synthesis. In-distribution synthesis, generating
within the dataset distribution, brings two potential drawbacks, one
is the synthetics category bias and the other is the fragmentation
problem. The former violate fusion hypothesis. For example, latent-
GAN [Achlioptas et al. 2018] solved the in-distribution generation
problem. It is suitable for the natural creations or man-made artifact
categories. Therefore, in the creative biologically inspired design the
latent-GAN may be not proper. The latter is empirical, i.e., when the
network tries to generate new samples in regions of sparse training
data, the synthetics will behave in a broken way. This phenomenon
requires us to explore a new deep generative framework for out-of-
distribution synthesis problem. The framework should ensure high
fidelity and more biologically inspired synthetics.

ACM Trans. Graph., Vol. 1, No. 1, Article . Publication date: March 2023.



799

800

801

802

803

804

805

806

807

808

809

810

811

812

813

814

815

816

817

818

819

820

821

822

823

824

825

826

827

828

829

830

831

832

833

834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

8 • Anon. Submission Id: 671

856

857

858

859

860

861

862

863

864

865

866

867

868

869

870

871

872

873

874

875

876

877

878

879

880

881

882

883

884

885

886

887

888

889

890

891

892

893

894

895

896

897

898

899

900

901

902

903

904

905

906

907

908

909

910

911

912

Fig. 7. Feature degradation problem occurs during simply interpolation.
During the interpolation from animals to chairs, note that biological fea-
tures(solid line) of head(orange), leg(red) and tail(green) are fading away
during interpolation.

Feature Degradation. Feature degeneration(Figure 7) means that
some detailed form-wise features disappear during latent code trans-
formation (e.g., interpolation). This issue limits the further applica-
tion of deep generative models to mine potential creative samples.
A straightforward solution is to deploy a feature detector to identify
the semantic features of the shape of both. However, the method
violates the category-independent hypothesis unless there is an un-
supervised feature detector. Note that the label is weak-shot, only
containing natural creations, man-made artifacts. Therefore, the
feature-preserving interpretable direction from a high-fidelity ini-
tial point is suitable to explore the feature blend results and recover
the potential feature degeneration.
Two challenges inspired us to design a bi-stage approach, a cre-

ativity synthetics solver to solve synthetic challenge and modeling
challenge.

6.3 Creativity synthetics solver
Since it has learned an implicit representation space for the occupa-
tion field of a latent creative biologically inspired design collection,
a high lack of diversity and low fidelity synthetics would lead to
selection difficulties due to improper sampling strategy. It converts
the original time-consuming trial-and-error modeling effort into
another tedious selection effort. To avoid this synthetic challenge,
it requires an interface to display Projected initial candidates from
Cold Start Recommendation and a local manifold exploration strategy
to allow human-in-the-loop fine-tune for potential design variants.

6.3.1 Cold Start Recommendation. To address the low-fidelity issue
in the out-of-distribution (OOD) region, we propose to transform
the given training dataset distribution into a cold start distribution.
Similar to the cold start problem in recommendation tasks, our frame-
work requires an efficient strategy for extracting the first batch of
samples G(zi )Mi=1 from the latent space Z with high fidelity and
large diversity for the initial user interface. To address this challenge,
our approach involves two components: (1) a heuristic scoring func-
tion for evaluating the creative biologically inspired synthetics of high
fidelity and of high biologically inspired value, and (2) an efficient
sampling method for the latent space that focuses on high-scoring

(c) Cold Start Distribution

(b) Interpolation and Linear Combination

(c) Interpretable Direction

Low fidelity 

(a) Training Dataset Distribution

Out Of Distribution Area

Man-made Artifacts

Natural Creations

Bionic Synthetics

Fig. 8. Motivation of cold start method: Given various natural crea-
tures(green scatter) and man-made artifacts(pink scatter) in latent space. We
hope to compute a multi-modal cold start distribution, where each peak rep-
resenting a potential category of biologically inspired design. The contour
represents the density of training dataset(a). The gap between man-made
artifacts and natural creation is described as out-of-distribution(OOD) area.

synthetics. Therefore, we design an optimization strategy referring
with a heuristic hybrid objective functionf : X 7→ R.

Previous latent space exploration methods such as interpola-
tions and arithmetic produce samples based on manual sample
selection(see Figure 8 b). In fact, they are linear combinations to
explore the OOD region, relying on a few samples as a vector base.
If we consider the local manifold of one point, there are several
interpretable directions (see Figure 8 c) to explore potential changes
locally. However, they will face low-fidelity challenge. For the low-
fidelity issue in the OOD area, most of them may give the point to a
broken appearance. To encourage the synthetics to fall in the OOD
region and retain high fidelity, we attempt to transform a given train-
ing dataset distribution into a cold start distribution(see Figure 8 d).
Probability density is related to fidelity and biologically inspired
value via a heuristic hybrid score function.

Hybrid scoring function. Since desired synthetics are the trade-off
of biologically inspired value and fidelity, the hybrid objective func-
tion consists of a connected component counts function as quality
term and a fully-connected binary classifier as W-Cls to distinguish
design targets from biologically inspired references. The effect of
hybrid scoring function is shown in Figure9 Connected component
counting functions make the objective function f (x) a black-box,
that is, it is unknown to general closed-form or differential informa-
tion. The connected component number of a latent vector z can be
obtained by discretizing the occupation fields of synthetics G(z):

Ncд(z) = ϕcc ({p | fθ (z,p) > δ ,∀p ∈ {[0,Nr ] ∩ Z}
3}) (2)
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where δ is the threshold to discretize the continuous occupation
field.Nr is the object resolution of a voxel. fθ (z,p) is the implicit oc-
cupation field in query point p, ϕcc is connected component number
function mapping voxel to R.
Although ϕcc is highly black-box and not differentiable, we still

find an differentiable approximate upper bound ϕ̂cc directly en-
courage the lower number of connected components for synthetics
during training. We first transform sampled points set p as graph
G = (V , E). The graph is extracted from a grid with sampling reso-
lution 643. Vertex V is valued with occupation fields in target point
and The edge E = ei j indicates whether two vertex are adjacent
to each other. According to Euler’s formula of Single Connected
Diagram, we haveV −E+F = C+1, where F represents face number
and C is our target, connected components number. Given input
shape x , we construct a differentiable approximation function for C
as R(X ) :

R(V ) := |V | − |E | =
∑
i
F (vi ) −

∑
i

∑
j ∈Ω(i)

F (vi )F (vj )

2
+ |k | , (3)

where F (vi ) ∈ {0, 1} respects to whether the point of vertex vi is
occupied. Ω(i) represents the neighbor 26 vertexes of given ver-
tex vi . The number of ei j is computed by F (vi )F (vj ) since it will
equal to zero if one of vi and vj is not occupied, which is easily
achieved with one layer of convolution. |k | is a constant. Then we
discretize the schematic function F (vi ) into a differentiable bounded

f (vi ) =
1√
2σ

e
− x2

2σ 2 , since IMAE outputs continuous values from 0
to 1. Finally, we have a term R(V ) encouraging low number of con-
nected components:

R(V ) =
∑
i

f (vi ) −
∑
i

∑
j ∈Ω(i)

f (vi )f (vj )

2
. (4)

Since a differential loss function, we retrain our IMAE model for
better quality of synthetics with loss as following:

L(S ;θ ) =

∑
p∈S
| fθ (p) − F (p)|

2 ·wp + R(fθ (p)) ·wp∑
p∈S

wp
. (5)

Given the embedding of man-made artifacts Dzd = {z
d
k }

M
k=1 and

natural creations Dzb = {z
b
k }

M
k=1. A weakshot classifier(W-Cls)

fc (z) = argmaxi P(Y = i |z) is trained with the binary classification
entropy loss:

L(θ ) =
∑
i
logp(yi |zi ;θ ), (6)

where z ∈ Z is latent code and Y represents random variance of the
binary categories , fc (z) ∈ {0, 1}. Our goal is to encourage synthetics
as a trade-off between both natural creation and man-made artifact
categories. When the classifier uncertainty reaches its maximum,
Percept() should obtain the optimum. Percept() is described by the
following function:

Percept(z) = hull(fc (z)) = −fc (z)
2 + fc (z), (7)

wherehull function is a quadratic function that obtains its maximum
value at 0.5 possibility, a measure of maximum uncertainty.

High Score

Mid Score

Low Score

Fig. 9. Effect of scoring function.

Functionality

Semantics

Fig. 10. Effect of local manifold subspace exploration. Two candidates respec-
tively achieved functional and semantic enhancements via first interpretable
direction transformation.

The hybrid scoring function contains both classifier perception
terms and quality terms:

S(z) = Percept(z) + α1ϕcд(z) (8)

whereα1 is the coefficient ofϕcд(z) terms.ϕcд(z) is a transformation
encourage connected components to lower, where is defined as
ϕcд(z) =

1
1+Ncд (z) .

To ensure idealα1 and Percept(z) ranges, we ablate two properties
of the sampled synthetics. The perception term encourages the shift
of the range of generated samples to the OOD area, while the quality
function is discrete and concentrated in several fragments of latent
space. We finally select the top 10k synthetics with the highest total
score and visual effect of the generated geometry. The α , empirically
determined to be 0.58, allows control of whether the samples with
sub-optimal quality are selected, guaranteeing diversity to some
extent. Candidates amounts 10k can be adjusted by users according
to the design demands.

Sampling strategy. The method provides a means of latent space
optimization for upstream recommend. It maps latent code z̃ from
space Z̃ to objective function high score region as a subspace of
latent space Z . It is notable that objective function f is evaluated
as fewer times as possible and the produced sequence of evalu-
ated points DM ≡ {xi , f (xi )}

M
i=1. A heuristic sampling method

PrimeSkipSampler and kernel density estimation is used to form the
ground truth point set for the out-of–of-distribution synthesis task.
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Fig. 11. Introduction of local manifold subspace exploration. A 2-direction
example is presented here. The two sub-directions are disentangled, so the
user can find 4 kinds of suitable design variants by sliding. Based on initial
synthetic x0, there is several subspace with respect to G decomposition of
parametric space as interpretable directions. We can control latent code z0
via corresponding slider.

Prime skip sampler. The domain, where the high quality samples
are located, is narrowed in a convex hull S consisting of whole
embedding vectors of the training datasetDzb ∩Dzd . What’s more,
it is thought that select middle several points from interpolation is
an acceptable approach for creative exploration and suitable for a
ready-to-use evaluation in convex hull S . If we sample N times for
interpolation of each pair of z1 ∈ Dzd and z2 ∈ Dzb and choose
the middle m points in each pair, the samples set {z̃} is as follows:

{z̃} = {
λ + ⌊ N+12 ⌋

N
z1 + (1 −

λ + ⌊ N+12 ⌋

N
)z2 |λ = 1, ...,m}, (9)

where N represents the sampling time for interpolation. However,
it seems to be a very large number of sampling times for middle
m points of interpolation between synthetics. The sample size is
Ninterpolation =m× |Db | |Dd |. Aiming to reduce the sample num-
bers, we find that skipping a prime number during sampling can
preserve the algebra structure of interpolations set{z̃}. It is a cyclic
group of orderm while other sampling method in {z̃} is converged
to the same structure.

{̃̃z} = {zi ∈ z̃ |i mod prime = 0}. (10)

Given t th indexn(t ) in the cyclic group, we can back calculate (i, j,k)
based on following equation:

n(t ) = t ×prime = (i −1)|Dzb |+ (j −1)|Dzd |+k (k < m+1). (11)

We find corresponding t by sequential enumeration of (i, j,k) and ob-
tain ExtractBase function ϕ : {t ×prime |t ∈ [0,T − 1]} → {(i, j,k) ∈
N3 |k ∈ [0,m]}

Initial population ZI = {zk }
γ
k=1 extracted by Prime Skip Sampler

is shown in Figure 8 d, where each modal represents a category
of biologically inspired design. Kernel density estimation(KDE) is
used to estimate p(ZI ) from ẐI : Top 10k samples ranks from {̃̃z}
with bandwidth 0.1. 10k is empirical hyper-parameters and users
can adjust further.

Post-process. Post-process are deployed to increase the fidelity
of synthetics. We adopted Marching Cube Algorithm [Lorensen
and Cline 1987] to extract meshed zero-isosurface from occupation
field. Density similarity of triangular lattices allows us to have a

ALGORITHM 1: Pseudocode for Prime skip sampler.
Input: Generator G, Objective function f , Latent codes set

of nature creations Dzb , Latent codes set of
man-made artifacts Dzd , Max iteration times T ,
Selection ratio rs , interpolation points numberm.

Output: latent codes set of candidates Dzc .
Nitp ←m |Dzb | |Dzd |;
prime ← FindMaxPrime(⌊

Nitp
T ⌋);

Sindex := {i ∈ [0,Nitp ]|i mod prime = 0};
Dz&score ← ∅;
for t ∈ Sindex : do

i, j,k = ϕ(t); l (t )source = Dzb (i); l
(t )
tarдet = Dzd (t);

z(t ) ← l
(t )
source +

k
m−1 (l

(t )
tarдet − l

(t )
source );

score(t ) ← f (z(i),G(z(i)));
Dz&score ← Dz&score ∪ {(z

(t ), f (z(i)))};
end
Dzc ← Rank(Dz&score , rs );

Fig. 12. Ablation study for the relationship between marching cube and pro-
gressive training:Thres is the isovalue of marching cube;Re is the resolution
in progressive training.

uniform criterion for extracting a smooth organic form from these
discrete triangular meshes. We therefore used triangulated surface
simplification and quadratic smoothing to obtain a smooth surface
that meets the designer’s expectations. We traded off the resolution
of the progressive training, the parameters of the marching cube,
and the resolution of sampling from the isosurface. The results of
Figure 12 and Figure 13 reveal that the current post-processing
strategy leads to the best visual results.

6.3.2 Local manifold subspace exploration. Cold start filters out
biologically inspired potential candidates of high fidelity and out-
of-distribution. They help users narrow down their search space.
However, there is no guarantee that the filtered candidates will
be recognized by users as creative biologically inspired creations.
Sampled results will still suffer from local artifacts or feature degra-
dation(see 9). Even for those generators that have both, designers
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Fig. 13. Ablation study for resolution of implicit representation. The implicit
field learned from IMAE have infinite resolution in the cost of memory. The
post-process can effectively improve visual effect based on the 643 resolution

are eager to explore potential design variants based on these pro-
totypes. Therefore, we hope that synthetics can be fine-tuned to
achieve functional and of biologically inspired semantic variants.
Our solution is unsupervised based on pretrained generator, which
means user can explore local manifold region [Chiu et al. 2020] of
certain synthetics via slider interaction(see Figure 10).

Select candidates via projector. Following previous large 3D shape
collection exploration work [Averkiou et al. 2014; Chen et al. 2021],
we conducts a projector view for visualize the distribution of embed-
ding synthetics via UMap[McInnes et al. 2018]. User will further un-
derstanding distribution relationship between synthetics and their
reference. Finally, the object x0 remain to be exploration variants
will be selected for local manifold exploration.

Interpretable directions. Exploring interpretable direction (EID) [Shen
et al. 2020a] is more suitable as an interactive tool for users to ex-
plore potential design variants than as part of an automated pipeline.
To address the problem of feature degradation, we further consider
the interpretable directions as a series local linear subspace of mani-
fold with respect to decoderG . The user is assisted in exploring this
local manifold subspace by means of slide bars(see Figure 11).
Considering the avoidance of introducing task-relevant priors

and the use of knowledge learned by neural networks, generator-
based [Chiu et al. 2020; Shen and Zhou 2021] direction methods
are suitable. They focus on the first layer of a generator near the
bottleneck. There is a linear transformation A ∈ Rd×k in the dense
layer in front of activation. To extract the k most significant direc-
tions [n1,n2, · · · ,nk ] of a linear transformation, eigenvectors of the
matrix ATA would achieve the maximum transformation effect and
ensure ni k is distinguishable from others. The latent code received
from kth user interaction is that:

z(k ) = zi
(k−1) + αini , (12)

where zi ,αi ,ni represents the ith dimension of latent code zi , eigen-
value and eigenvector of ATA respectively. Finally post-processing
enhances the rendering effect through shape decimation and smooth-
ness with smooth shade.

7 INTERFACE
After getting the candidates and determining the semantic direction,
an interface is needed to further help the user quickly navigate the
candidates and fine-tune them. Figure 14 shows our user-in-loop
design interface.

It seems also to be a challenge that select and interpret individual
preferences from an unorganized collection of cold start candidates.
As an intelligent tool for 3D modeling, an important facet of creativ-
ity is human-in-the-loop. The "human" includes not only beginners
or nonprofessional general users, but also designers with profes-
sional backgrounds. For the average user, they require ready-to-use
products and enjoyable exploration through neighborhood discov-
ery and fine-tuning. For professional designers, they tend to explore
the intrinsic relationships between various paradigms of biologi-
cally inspired design and generative objects. We have summarized
their requirements as follows:

• Product traceability problems [Bertolini et al. 2006]:what
types of natural creations and man-made artifacts fuse into a
given synthetic;
• Product Family Analysis [Jose and Tollenaere 2005]: Which
products are of the same family and what are the evolutionary
trajectories for a given product;
• Product innovation detection problem [Goldenberg et al. 2002]:
How to measure the creative value of synthetics and which
products are more creative in terms of generating results.

We designed the user interface to weigh the needs of both user
groups. User interface help potential users to explore high-fidelity
and diversity synthetics. The solution of our interface for the three
previously mentioned requirements is as follows.

• Sampling within one cluster reveal a specific product family.
We provide enough thumbnails for users to browse a product
family quickly.
• To find which neural creations and man-made artifacts shape
features contribute to final synthetics, K training dataset
neighborhood of the synthetic serves as a variance of Re-
trieval task, focusing on retrieving possible biology proper
or product elements [Xu et al. 2016].
• Creative synthetics in the realm of design paradigms are mod-
eling to detect outliers from high density regions or big cluster.
They are easy to discover in the projector. In addition to the
descriptor of implicit autoencoder, the perceptual metric is
also taken to differ creative synthetics from common ones.

Our interface provides a projector and 3D viewer for users to
explore the design space and view 3D objects, with semantic sliders
for user manipulation and a history bar to record saved designs.

Projector. It is mainly used to explore inside the space of candi-
dates and data set associations, similar to shapesynth [Averkiou
et al. 2014], The advantage of such a space is that the spatial relation-
ship between the distribution of our candidates and the distribution
of the data set can be visualized very well. It can also reveal the
internal relationships of the candidates. The user can automatically
see that the candidates are showing a varying number of clustering
relationships. Our interface also allows the user to highlight the
sets of different categories. The user can also zoom in to select the
desired item. The selected items change to yellow highlighting. And
the selected item is passed to other components, allowing the user
to quickly view it and manipulate its 3D shape in several other
components. In addition to the exploration method, we also allow
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Fig. 14. Our interface for user-in-the-loop design of DeepBionicSyn. Please refer to the demo video for interactive sessions. The middle window contains
a projector that allows the user to quick skim the whole latent vectors distribution of training datasets and selected candidates from previous step. Top
three windows show three kinds of states of the viewer. Projector is highly interactive for user exploration, such as double click select, select by index(a3),
auto camera redirection(Retrieve), category highlight, thumbnails for skimming(a4) and viewing selected candidates(a4), size adjust(a2). Once a candidate
is selected, the user can switch to the semantic slider(b) for fine-tuning. The 3D browser(c) allows visualizing real-time change as the slider changes. The
post-processing gltf-format 3D model is accessible to rotation ,transformation and zoom. The history bar allows users to retain satisfactory findings for
download or subsequent recovery.

the user to quickly redirect the selected object directly based on its
history or its ID.

Semantic slider. Once the user has selected the desired synthetic
through the projector, we provide a series of semantic sliders based
on the Sefa algorithm [Shen and Zhou 2021] to help the user view the
local flow shape of the selected object under the synthetic transfor-
mation. The sliders represent from high to low the degree of impact
on the sliders respectively. According to the subspace search [Chiu
et al. 2020], we set the default number of sliders to 6 for efficiency.

3D browser. We provide three layers of views to help users nav-
igate quickly. The first layer tries to load automatically when the
user hovers over the projector mouse for a quick view. The second
level is a rendered view that specifically shows the selected object.
It is used to inform the user which object is currently selected. The
third view is the 3D viewer, used to help the user see in real time
the changed state of the object after sliding the semantic slider and
to allow the user to browse the shape of the 3D object by rotating,
scaling, etc.

History. Once the user has selected the object and satisfied with
through the projector and semantic slider, the object can be stored
in the history by a save button. The stored objects allow the user to
download them, access the user research page for evaluation, and
go back to recover the state of the operation, including the selected
object ID and the corresponding semantic slider adjustments.

8 EVALUATION
We provide a baseline comparison to demonstrate that our approach
is better suited to biologically inspired design tasks than other po-
tential alternatives. Then, we explore the performance and utility
of our solution in real biologically inspired designs through a user
study.

8.1 Baseline comparison
Baseline target. The baseline comparison covers potential alterna-

tives to creative biologically inspired designmethods and other OOD
synthesis methods as creativity synthetic solver. Dreamfields [Jain
et al. 2022], StyleYaYa [Huang et al. 2017], ZoomorphismDesign[Duncan
et al. 2015] and 3D style transfer methods [Chen et al. 2021; Yifan
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Fig. 15. Semantic entanglement leads to partial training sets with affine
value. The first four samples were improved in functionality by sharing the
chair feature for the animal category data. The fifth sample has some natural
affinity because it shares the animal head feature. This suggests that the
entanglement of the common semantics of the data during network training
has the potential to bring creativity even to samples from non-OOD regions,
contrary to the current trend of pursuing disentanglement of generative
model.

et al. 2020] are evaluated to compare the potential geometry blend-
ing capability for biologically inspired design with our methods.
Random sampling from the l-GAN[Achlioptas et al. 2018] or inter-
polation method[Wu et al. 2016] serves as the baseline creativity
synthetic solver compared with our hybrid score function sampling
methods and human-in-the-loop interface.

Qualitative evaluation. As shown in Figure 16, our synthetics are
more suitable for creative biologically inspired design tasks than the
other baselines. Detail-preserving shape deformation from Neural
Cage[Yifan et al. 2020] generate chairs without animal features,
violating category-independent hypothesis. Decor-GAN [Chen et al.
2021] meets the synthetic challenge with respect to local animal
features, but fails to address the modeling challenge as fidelity is not
considered. StyleYaYa provides a more concrete biologically inspired
design instead of an organic style biologically inspired design. Due
to the lack of materials in the reference data, we only examined
StyleYaYa in terms of geometry. The result of Dreamfields is the
most creative and visually expressive. However, because it has to
satisfy multiple angles of rendering the image at the same time, the
animal features are blurred.
The candidate neighbors indicate that our results do not just

mimic the reference data(see Figure 20). The use of D-O augmen-
tation allows for a variety of combinations of biologically inspired
designs. It is worth noting that our method outputs the common
features of a batch of input datasets, while the baseline can only
consider a pair of data as input. This means that our approach can
be used to extract semantic features that are common to multiple
classes of datasets so that even the original training data carry bi-
ologically inspired semantics. For example, some animal category
reconstruction data also incorporate the semantics of the chair to
improve its functionality (see Figure15).

Quantitative evaluation. Quantitative evaluation of the perfor-
mance is considered in this new task. The metric for modeling
challenge includes connected component terms ϕcд(z) and shape
smoothnessMs in order to measure fidelity and organic style forms.
Shape smoothness is computed via mean curvature from the discrete
Laplace-Beltrami operator:

Ms =

N∑
i=1

1
2
∥∆Vi ∥2, (13)

where ∆ is the discrete Laplace-Beltrami operator andVi is the i sam-
pled mesh vertex extracted from the zero-isosurface with Marching
Cube. N is the number of sampling points, which is 5k following
[Yifan et al. 2020].

For the synthetic challenge, we attempt to quantify the synthetic
bio-inspired value and construct an out-of-distribution score (OOD
Score). Generally, if we justify whether a method can generate novel
synthetics instead of just imitating the training dataset, we will
consider the synthetics set distribution difference with respect to
the reference based on the metric of chamfer distance (CD), K near-
est neighborhood similarity and Frechet Inception Distance score
(FID) [Heusel et al. 2017]. However, some studies have shown that
valuable synthetics are not very far from the training dataset distri-
bution but a tradeoff in the parametric representation distance [Elho-
seiny and Elfeki 2019; Martindale 1990]. When the distance exceeds
this threshold, the sampling results in the latent space lose their task
value due to the loss of common features learned in the high proba-
bility density region. By regressing this threshold on the scores of
the designer’s manually designed model, we propose a new metric,
the out-of-distribution score (OOD Score). Given a synthetic xi ∈ Sд
and training dataset x j ∈ St , the OOD score ϕood of Sд with respect
to St is defined as follows:

ϕood (Sд, St ) =
1
√
2σ

e
−
(D(Sд ,St )−û)2

2σ 2 , (14)

where û is the threshold of the optimal design bound.We can rewrite
Minimum Matching Distance (MMD) to evaluate the OOD score of
Sд with respect to Sr :

ϕmmd
ood

(
Sд, St

)
=

1
√
2σ

exp(−
( 1
|Sr |

∑
xi ∈St

max
x j ∈Sд

d(xi , x j ) − û)
2

2σ 2 ),

(15)
where û is regressed on global distanceD(S(k)д , S

(k)
t ) of method k and

human perception score {si |1 ≤ i ≤ 4} according to the following
equation:

û = argmax
u

∑
k

(
1
√
2σ

e
−
(D(S (k )д ,S (k )t )−u)

2

2σ 2
∑
i

βis
(k )
i + ε), (16)

where βi and ε are coefficients regressed from the human perception
score with respect to the metric of two shape d(x,y). The intuitive
idea of this construction is to determine the given boundaries based
on linear combinations of perceptual scores of real bio-inspired
designs frommanual design andmanual modelling. For more details,
please refer to the supplementary material.
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Table 1. The quantitative evaluation comparison to other baseline. KN-MMD, MMD, FID is the closer to manual modelling and manual design the better. For
more clarity, we introduce higher and better OOD score loдϕmmd

ood and loдϕ f idood . Smoothness Ms and the number of connected components ϕcд evaluate
the quality of synthetics.

KN-MMD(-) MMD(-) FID(-) loдϕmmd
ood (↑) loдϕ

f id
ood (↑) Ms (↓) ϕcд (↓)

Our 3564.09 2437.20 164.71 -7.37 -0.39 0.03 2.50
StyleYaYa 3.41 111.77 761 -41.89 -458.82 0.19 1.61
DecorGAN 5.34+E4 5.83+E4 2575.03 -1000.00 -1000.00 1.10 5.26
Neural Cage 58.23 111.07 821.05 -41.92 -560.56 100.12 1.38

l-GAN 63.82 67.03 231 -44.47 -0.58 0.75 3.44
Interpolation 14.17 41.73 91.94 -47.24 -11.17 0.43 2.89

Manual modelling 2377.22 1990.67 157.31 1.07 0.58 0.15 1.05
Manual design 2262.80 1538.65 217.81 1.18 0.75 0.15 1.05

Neural Cage

Décor-GAN

Our

StyleYaYa

DreamFields

Manual Design

Manual Modelling

Fig. 16. Comparison with baseline. Each row shows 4 randomly selected
shapes. Odd columns represent front view ofbiologically inspired chair
while even columns represent back view. The first four rows of shapes are
from potential alternatives to our task, the fifth row of shapes are from our
method, and the last two rows of shapes are from the designer’s manual
creation mentioned in the User Study.

8.2 User study
We aim to address two questions from the user studies. The first
question is how well our method compares to the work of a human
designer. The second question is how much time our method can
save compared to manual modeling.

Data. Models generated by DeepBionicSyn were selected and
scored by 11 invited users. The users selected 20 of their favorite
models through our interface. These data were subject to creator
self-evaluation and third-party cross-evaluation. The models from
other baselines are also generated and selected by invited volunteers.
Because of the lack of presegmentation, the inputs of StyleYaYa were
similar to those in our training set from the StyleYaYa segmented
dataset, including Stanford cow, rabbit and armchair. DecorGAN

and DeepCage were trained with the same animal data as ours and
chairs from ShapeNet.

The human designer’s biologically inspired design model can be
obtained in a more complex manner. To validate the effectiveness
of this tool, several professional designers were asked to design
biologically inspired models, record the time spent and score the
result. As shown in Figure 3, the target for collecting manual biolog-
ically inspired design data is divided into themodeling challenge and
synthetic challenge. For the modeling challenge, 50 reconstructions
were based on existing design concept drawings. Since there are
few ready-made 3D models of biologically inspired animal chairs
and abundant concept renderings, the designer skipped the concept
shape feature fusion stage and modeled the biologically inspired
product directly from the existing design picture. The manual mod-
els generated in this way are defined as "manual modelling" (see
Figure 16 manual modelling). We collected over 1000 images of form-
wise biologically inspired design from the internet as a reference
gallery. A portion of the biologically inspired designs was selected
from the gallery based on the salience of natural features, prod-
uct function, and creative factors. In addition to the existing design
products, based on the development of text-driven image generation
technology, we also selected some models from DALL·E [Ramesh
et al. 2021] with the text prompt in the form of "A in the shape of
B". Human designers reconstructed the given images via 3D soft-
ware and recorded the time spent. After completing the models, the
designers scored every model in terms of (a) natural features, (b)
creativity, (c) product functionality, and (d) organic style (see Fig-
ure 17 for image description). The four terms are defined as human
perception score.
Regarding the synthetic challenge, 50 3D models were indepen-

dently created by browsing the animal and chair models that were
readily available. In the synthetic challenge, 3D biologically inspired
designs need to be created from scratch without reference. Namely,
the designer had the same model as our algorithm training dataset.
We recorded the time spent on the design process and the human
perception score of the design results. The manual models generated
in this way are defined as "manual design" (see Figure 16 manual
design).

Time cost. We invited individuals to choose and design their fa-
vorite biologically inspired design using our interface, and we timed
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Fig. 17. Scoring standard of user study. Users evaluate biologically inspired
shapes following 4 prospective. We provide with referring case and corre-
sponding reason. Scoring object includes our synthetics, manual design and
baselines.

each step. As a comparison, we recorded the time spent by the
designers when building models based on existing biologically in-
spired designs (to evaluate the modeling challenge), and the time
spent improvising after browsing the dataset (to evaluate the syn-
thetic challenge). The recorded time included training time tt and
inference time ti . It is notable that assembly-based methods is no
training time, so we define the optimization time as inference time
ti . For manual design for synthetic challengeor manual modelling
in the modeling challenge, the time components are very different.
We treated conceptualization outside the modeling software and
modeling inside the modeling software as the training time tt and
inference time ti , respectively. To evaluate the result quality, we
recorded the output number as Nд , and the average score of the
results in nature features Sbi , creativity Sc , product functionality
Spf and organic style Sos by the invited users. The standard is
shown in Figure 17. A more detailed description of each term and
implementation environment is described in Appendix III.
Since our method generates a large number of new samples, we

should additionally take into account the time it takes for the user to
locate a new variant by using a projector and to fine-tune via sliders
in the interface. We refer to the former as user browse time tub ,
and the latter as user finetune time tut . Therefore, we calculated
the user’s exploration time in both processes. We find that user
satisfaction with the generated objects is significantly increased by
a certain degree of customization of interactive exploration.

Scoring. The human perception score includes (a) natural features,
(b) creativity, (c) product functionality and (d) organic style (see
Figure 17 for image description):

(1) Natural features indicate the degree of visual similarity be-
tween the current design and the animal. If the animal refer-
ence can be recognized, the highest score will be awarded.

 

 

 

 

 

 

       

                                                           
    

Terms

Fig. 18. Average score for human perception score in user study.

(2) Creativity indicates whether the model is aesthetically pleas-
ing or whether the way the chair and animal features are
combined is more interesting. Creativity is also used to eval-
uate whether the algorithm solves the feature degradation
problem.

(3) Functionality is used to evaluate whether the design as a
chair is structurally reasonable and can be 3D printed for
manufacturing after fine-tuning.

(4) The organic style emphasizes harmony between human habi-
tation and the natural world[Wikipedia 2022]. In this work,
we emphasize an abstract and smooth stylistic form.

Case result. Invited professional designers completed the follow-
ing tasks via our interface. First, they became familiar with the
latent space with the help of embedding point space relationships
and some representative synthetics. Second, they searched the local
manifold subspace to deform selected synthetics with several slid-
ers. Figure 19 shows the case results. The time records tub and tut
in Table 2 illustrates that the user can select desired candidates in
one minute and finetune them in two minutes. It demonstrates that
our work can be used to guide users to create satisfactory organic
biologically inspired designs in a suitable time frame. Because of
the interface guide, users can spend less time designing the desired
effect they want. When we cross-scored the samples obtained by
browsing only and those obtained by finetuning to third-party users,
the results also showed that it was worthwhile to spend some time
fine-tuning the result with the slider in exchange for higher-quality
biologically inspired design results.

Review. Users were generally satisfied with the interface and the
results of our method, including the richness of candidate samples
displayed in the projector and the ease of viewing the samples for the
current biologically inspired design reference. The high-level adjust-
ment provided by the semantic slider bar may be more convenient
than using the modeling software. However, users also suggested
that the changes brought by the semantic slider adjustment are diffi-
cult to control and some reference examples before adjustment need
to be given. This problem was somewhat alleviated after we quickly
provided a rendering of each slider adjusted by 0.5 according to
the positive and negative values. In the future, we hope to make
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Table 2. The time spent and human perception score for our method, four baseline methods and two kinds of biologically inspired designs created by
professional designers. The time spent illustrates the efficiency of our algorithm and interface. The human perception score indicates that our approach is
nearest of human designs in the creative biologically inspired design tasks with less time spent. We highlight the top two methods whose Sbi , Sc and Spf
scores are closest to the manual data.

Method tt (per shape) ti (per shape) tub tut Nд Sbi Sc Spf Sos
Our 24E-04h 0.33s 37.97 93.79 batch 3.38 3.34 3.47 3.57
Dreamfields 72h 60s - - single 2.38 2.92 2.38 2.86
Neural Cage 8.85E-04h 0.95s - - batch 1.04 1.77 4.27 2.23
DecorGAN 17E-04h 0.42s - - batch 2.69 3.66 1.88 3.00
Styleyaya - 0.24h - - single 3.90 3.06 2.69 2.78
Manual design 0.31h 1.68h - - single 3.65 3.76 3.90 3.60
Manual modelling - 1.66h - - single 3.36 3.35 3.88 3.23

the semantic changes brought by the sliders consistent for each
candidate.

Scoring result. The human perception scores of over 2.7k sam-
ples (see Figure 18) were collected by 20 third-party invited users.
The users were told to read Figure 17 in advance and score each
sample. Most users were university students majoring in computer
science or design. The remaining users were experts in related fields.
See the Appendix for specific questionnaire data and demographic
information. The highest rating among the four items is manual
design for the synthetic challenge, followed by manual modelling
for modeling challenge. This means that the biologically inspired
design considering the synthetic challenge in the creation process is
indeed of higher organic biologically inspired value. Thus, our ap-
proach is comparable to humanwork in all human perception scores,
while other baselines have strengths in only one of the terms and
significant weaknesses elsewhere. StyleYaYa, which is based on pre-
segmented and assembled components, has a higher natural features
score due to the realistic component image, but is deficient in terms
of creativity. The two style transfer approaches have completely
opposite advantages and disadvantages. DecorGAN is more innova-
tive, but less functional because it does not take into account the
breakage problems associated with detailed animal features, while
DeepCage is less innovative and more functional because cages
cannot integrate detailed animal features into the chair.

8.3 Ablation study
We conducted ablation studies to validate each module related to the
biologically inspired design results, i.e., data augmentation, score
function in the cold start and postprocessing. To ablate the effect of
the creativity synthetic solver, we replaced this module with l-GAN
and random interpolation. Finally, we retained the reconstruction as
a control group. The evaluation metrics include MMD and quality
score ϕcд andMs .

The ablation study of our method (see Table 3) revealed that the
creativity synthetic solvercan significantly improve the quality of
synthetics in the OOD region. Figure 21 quantitatively illustrates
the effects brought about by our individual components. The in-
terpolation method is prone to fragmentation problems due to the
lack of quality constraints on the hybrid objective function. The
D-O and P-O methods can alleviate the underfitting and overfitting

Fig. 19. Effect of semantic direction. We invite volunteers to explore the
potential semantic directions through the slider bar. (a-f) shows a kind of
semantic transform designers recognize respectively. Participants success-
fully identified their preferred results in the process and adjusted the design
they felt could be improved through the slider. More detailed semantic
annotation are stated in Appendix.

problems respectively. These two issues are critical to the latent
space sampling results.

8.4 Limitation
Our method does not always generate biologically inspired form
with high recognizability (e.g., Figure 22). One straightforward
method to alleviate this problem is to decrease the ratio of selected
samples in cold start.

9 APPLICATION
The biologically inspired design results can be used to produce
children’s furniture and sculpture design for scenes. It expresses the
tendency to live in harmony with nature and achieve sustainable
development.
The goal of generating objects for children’s scenes is to create

interesting and safe objects. To achieve this, we need to generate a
diverse range of samples and carefully control the value of the sam-
pling objective function to produce organic and smooth results that
avoid sharp edges. These adjustments ensure that the initial distri-
bution of cold start candidates presented to the user in the interface
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Fig. 20. The neighborhood of synthetics. We explored the training dataset latent codes with the nearest Euclidean distance to the given synthetics in the
latent space. Each of the three columns from left to right represents the nearest man-made artifacts, natural creations and synthetics itself respectively. The
results show that our approach does not simply assemble the components of the reference shape but rather abstracts the morphology to form organic results.

Table 3. Ablation study of our methods. We first tested our pipeline without postprocessing and design-oriented and performance-oriented augmentation
strategies. Then, we generated synthetics via l-GAN and interpolation instead of our proposed creativity synthetic solver. As a control group, we also tested
direct reconstruction. KN-MMD is the MMD of the nearest 5 neighbors scaled by 105 with the Chamfer distance.

KN-MMD(↑) R-MMD(↓) MMD(↑) Ms (↓) ϕcд (↓)
Our 3564.09 11.48 2437.20 0.03 2.50
W/O postprocess 32.41 11.48 18.93 0.64 1.42
W/O D-O 217.42 4.77 209.27 0.13 1.35
W/O P-O 49.51 5.51 10.62 0.57 1.91
l-GAN 67.03 - 63.82 1.50 3.44
Interpolation 41.73 - 14.17 0.43 2.89
Reconstruction 12.73 - 11.48 0.64 1.97

is appropriate. As an example, Figure 23 (a) and (c) show a scenario
that is suitable for this application. Using the interface, designers
can search for candidates related to friendly animals and interesting
chairs. In the projection of the latent space, several major categories
of images can be observed. In this case, the users selected the cat
chair, the round dog head chair, and the reclining elephant chair, as
these designs better preserved the shape of the original biologically
inspired creatures. In addition, children’s furniture needs to be func-
tional and safe. We found that specific combinations are particularly
effective in producing solid and reliable chairs. For example, the
network has learned a priori knowledge that chairs and animals
both have four legs for support, which creates a stable structure.
The modern art of park sculptures requires a greater degree of

diversity, and we have found that combining different directions
has a significant impact on this target scene. By merging the side
of a chair with the shape of an animal through D-O augmentation,

we are able to create fashionable and organic designs (see Figure
23 (d)). Additionally, to achieve a diverse set of designs, we often
explore the distributions of synthetics with lower values of the
hybrid function, or regions of small distribution. This presents a
challenge in terms of quality, but we can use fine-tuning based on
the quality term to automatically find variants with one connected
component, allowing us to achieve functionality while preserving
the original artistic form. The designers have also creatively used
the platform on the back of a cat-related synthetic object to design
a table (see Figure 23 (b)).

10 CONCLUSION AND FUTURE WORK
In this paper, an automated framework of creative biologically in-
spired design framework is presented. We design a two-stage ap-
proach by first providing a parametric representation and then
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Fig. 21. The ablation results for each of our component.
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Fig. 22. Failure case for DeepBionicSyn. Samples with low OOD scores
tend to be too close to the original data, leading to feature degradation from
one categories of input dataset thus reducing the biologically inspired value.
The third problem is caused by naive quality assessment function. Even if
the quality score is high, some candidates may still have artifacts. Three
problems can be alleviated by improving the hybrid objective function.

Fig. 23. Application examples of generated biologically inspired designs. (a)
3D print results of candidates preferring by designers. (b) Cat tables were
created as a biologically inspired design. (c) Since it has an eco-friendly
appearance, organic style bio-inspired furniture created with our method is
available to enhance the life of children. (d) Our algorithms can produce
more inventive forms for designing urban landscapes.

extracting generators with biologically inspired value from the para-
metric representation space through a creativity synthetic solver.
We compare our approach to other competitors and demonstrate its

effectiveness in biologically inspired design tasks. We also conduct
a user study to evaluate the performance and utility of our solution
in real-world scenarios.

Our future work includes multimodal and more fine-grained bio-
logically inspired designs. Multimodal methods.Deep implicit rep-
resentation overtakes segmented partwise representation, which
is thought to be a kind of future form fit-and-diverse form [Xu
et al. 2012]. However, we retain geometric synthesis instead of a
high-quality textured shape. A multimodal learning framework may
contribute to more biologically inspired design possibilities. In ad-
dition to recent domain-specific textured representation implicit
models [Gao et al. 2021], neural rendering-based methods such as
NeRF [Mildenhall et al. 2020] make it possible to generate whole
scenes. Existing zero-shot text-prompt NeRF [Jain et al. 2022] will
bring a promising direction. Various grained biologically inspired de-
signs.Despite the fact that an out-of-distribution area covers most of
organic biologically inspired designs, we find that our implicit gener-
ative model guarantees a middle-grained shape blend. Interestingly,
recent study [Vinker et al. 2022] showed that semantic-aware shape
fusion at various granularities seems to be possible with the help
of CLIP (contrastive-language-image-pretraining) [Radford et al.
2021].
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